
©2018-2024 AGG Software

The Python plugin plugin

PRINTED MANUAL

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: 11/2/2024

Python plugin plugin

©2018-2024 AGG Software

Publisher

AGG Software

Production

©2018-2024 AGG Software
http://www.aggsoft.com

IContents

©2018-2024 AGG Software

Table of Contents

Part 1 Introduction 1

Part 2 System requirements 1

Part 3 Installing Python plugin 1

Part 4 Glossary 2

Part 5 Setup 3

Part 6 API 3

Part 7 Buffer 5

Part 8 List of values 5

Part 9 Built-in functions 7

Part 10 Module parameters 8

1 Python plugin plugin

©2018-2024 AGG Software

1 Introduction

Based on this module, you can create your own extension using the Python 3 programming
language. Python plugin provides interaction of the main program and Python via a simple API.

Scripts can function as modules of data query, data parser, data filter, data export, and events
handler. One script can perform several tasks.

Scripts have access to all features of Python. These can be either simple scripts to change a parser
variable value, or more complex scripts with timers, threads, and system calls.

After installation, in the module's folder, you can find a few examples of use for different application
areas.

2 System requirements

The following requirements must be met for "Python plugin" to be installed:

Operating system: Windows 2000 SP4 and above, including both x86 and x64 workstations and
servers. The latest service pack for the corresponding OS is required.

Free disk space: Not less than 5 MB of free disk space is recommended.

Special access requirements: You should log on as a user with Administrator rights in order to
install this module.

The main application (core) must be installed, for example, Advanced Serial Data Logger.

3 Installing Python plugin

1. Close the main application (for example, Advanced Serial Data Logger) if it is running;
2. Copy the program to your hard drive;
3. Run the module installation file with a double click on the file name in Windows Explorer;
4. Follow the instructions of the installation software. Usually, it is enough just to click the "Next"

button several times;
5. Start the main application. The name of the module will appear on the "Modules" tab of the

"Settings" window if it is successfully installed.

If the module is compatible with the program, its name and version will be displayed in the module
list. You can see examples of installed modules on fig.1-2. Some types of modules require additional
configuration. To do it, just select a module from the list and click the "Setup" button next to the list.
The configuration of the module is described below.

You can see some types of modules on the "Log file" tab. To configure such a module, you should
select it from the "File type" list and click the "Advanced" button.

2Installing Python plugin

©2018-2024 AGG Software

Fig. 1. Example of installed module

4 Glossary

Main program - it is the main executable of the application, for example, Advanced Serial Data
Logger and asdlog.exe. It allows you to create several configurations with different settings and use
different plugins.

Plugin - it is the additional plugin module for the main program. The plugin module extends the
functionality of the main program.

Parser - it is the plugin module that processes the data flow, singling out data packets from it, and
then variables from data packets. These variables are used in data export modules after that.

Core - see "Main program."

3 Python plugin plugin

©2018-2024 AGG Software

5 Setup

1. Download and install Python 3 for 32 bit systems (x86) on your computer.
2. You need to create a script in your editor because the module does not have its own script

editing tools.
3. Specify the full name of the script file (Fig. 1).
4. Specify the path to python3x.dll (if the program could not detect the path automatically).

Fig. 1. Settings w indow

6 API

After installation, in the module's folder, you can find a few examples of use for different application
areas. You can use one of the examples as a prototype.

Make sure your script code contains one or more functions with the specified name. When writing
your script, you should keep in mind that the code is supposed to run as fast as possible. Using
infinite loops is not allowed.

def FilterData(callparams, datasource, datain, dataout):

The main program calls this function if the "Python plugin" module is selected in the list of data
filtering modules. The main program calls this function each time it receives a set of variables from
the parser.

callparams - list of arguments to call the module.
datasource - data source identifier (it can be None).
datain - list of input data. It is a one-dimensional list (array) of parser variables, which can be divided
into virtual strings with a special separator. See the examples of how to work with such an array.
dataout - list of output data.

This function can both modify an input list and create a completely new one. If values have been
added to dataout, changes to datain will be ignored.

def ParseData(callparams, datasource, buffer, dataout):

https://www.python.org/downloads/windows/

4API

©2018-2024 AGG Software

The main program calls this function if the "Python plugin" module is selected in the list of data
processing (parsing) modules. The main program calls this function each time it receives data from a
data source and puts it to buffer. Please note that the program can receive data in small chunks, and
calling this function does not always mean that a data packet has been received completely. If a
data packet was not fully received, another function call will follow later.

callparams - list of arguments to call the module.
datasource - data source identifier (it can be None). By this identifier, a parser can distinguish data
coming from different clients.
buffer - access object that allows accessing input data buffer. The program allocates small buffers
(65 KB) for each connected data source. This buffer automatically accumulates all input data. The
task of the parser is to remove processed data from the buffer. Otherwise, it will get overfilled,
causing old data to be superseded by new ones.
dataout - list of output data.

In the case of successful processing of a data packet, the function must put at least one value in the
dataout array.

The main program expects each parser to return three required variables:

FULL_DATA_PACKET - full data packet
DATA_PACKET - short data packet (may be the same as FULL_DATA_PACKET). Usually contains
a data portion of the packet, without signatures, checksums, etc.
DATA_TIME_STAMP - returns date and time of data processing (usually datetime.datetime.now ()).

def ExportData(callparams, datasource, datain):

The main program calls this function if the "Python plugin" module is selected in the list of data
export modules. The main program calls this function after calling the parser and data filtering
modules. This is the last module in the chain of information handling. Therefore, the main program
does not expect output data.

callparams - list of arguments to call the module.
datasource - data source identifier (it can be None).
datain - list of input data. Similar to FilterData.

def EventData(event_params, datasource, event):

This function is called if the "Python plugin" module has received an event that could be generated by
the main program or another module. When calling the function, the main program does not expect
any output data.

event_params - list of arguments to call the module. The list passes variables that make up the
context of this event.
datasource - data source identifier (it can be None).
event - string value of event identifier.

def main():

5 Python plugin plugin

©2018-2024 AGG Software

The code of this function can be executed when loading and initializing the script. The code is run
only once. This function lets you initialize any global variables. At the end of your script, you need to
add a string of explicit invoking this function.

Example:

def main():

 print('Loaded')

main()

7 Buffer

This object has the following buffer interface functions.

Clear() - clears the buffer completely.

Shift(number) - deletes"number" bytes at the beginning of buffer (shifts the buffer).

GetBytes() - returns bytes from buffer as a standard list with "bytes" data type. Please note that if
the function Shift was called after calling GetBytes, then the object "bytes" will keep the "obsolete"
copy of the buffer.

Example:

>>> buffer.Clear()

>>> buffer.Shift(100)

>>> data = buffer.GetBytes()

8 List of values

A list of values is a set of items. Each item in the list is an object that has a name and a value. This
list can be divided into one or more virtual strings by a special delimiter element, that has a fixed
name "NEW_ROW."

The list has the following methods and properties.

Clear() - clears the list completely.

>>> list.Clear()

Delete(index) - removes an element with index from the list.

>>> list.Delete(0)

6List of values

©2018-2024 AGG Software

CopyFrom(object [, start_index = 0[, end_index = -1]]) - copies the specified number of items
from the object list. Additional start_index and end_index parameters specify the start and end
indexes of items in the source list. If end_index is -1, then all items in the list are copied down to
the end.

>>> list1.CopyFrom(list2, 0, 10)

ItemByName(name) - returns a list item by its name (string).

>>> item = list.ItemByName('VALUE')

ItemIndexByName(name) - returns the index of a list item by its name.

>>> index = list.ItemIndexByName('VALUE')

ItemValueByName(name) - returns the value of a list item by its name. A value can be of any
simple type, including None.

>>> value = list.ItemValueByName('VALUE')

ItemValueByNameDef(name, default) - returns the value of a list item by its name. If the element
with this name is not found, it returns the default value.

>>> value = list.ItemValueByNameDef('VALUE', 5)

InsertItem(index, name, value) - inserts a new element with name and value into the list, at the
index position. Returns the added item.

>>> item = list.InsertItem(0, 'VALUE', 5)

SetItem(name, value[, canadd = False]) - changes the value of a list item with name to a new
value. If the additional canadd parameter is True and the value is not in the list, then a new value is
added at the end of the list. Returns the found or new list item.

>>> item = list.SetItem('VALUE', 5)

AddItem(name, value) - adds a new element with name and value at the end of the list. Returns a
new list item.

>>> item = list.AddItem('VALUE', 5)

AddItemCopy(item) - adds a copy of the item at the end of the list. Returns a new list item.

>>> item_new = list.AddItemCopy(item_old)

FindRow(item, end_idx, is_row_end_sign) - searches for index of the last element of a string
starting from start index start_idx. Returns True if a string is found (one or more list items after
start_idx). end_idx is a variable whose value returns the index of the last element of the string.
is_row_end_sign is a variable that returns True if end_idx points to a special string separating
element.

Example:

7 Python plugin plugin

©2018-2024 AGG Software

from plugin import *

start_idx = 0

end_idx = CreateVarParam(-1)

is_row_end_sign = CreateVarParam(False)

row_cnt = 0

while datain.FindRow(start_idx, end_idx, is_row_end_sign):

 end_idx2 = end_idx.value

 print('Row: ' + str(row_cnt))

 print('Start index: ' + str(start_idx))

 print('End index: ' + str(end_idx2))

 if is_row_end_sign.value:

 end_idx2 -= 1

 row_cnt += 1

 start_idx = end_idx.value + 1

NewRow() - adds a new separator element at the end of the list.

>>> list.NewRow()

Count - is a list property that contains the number of items in the list.

>>> count = list.Count

Items[index] - свойство, которое позволяет получить элемент списка по его индексу.

>>> item = list.Items[0]

List item

Each list item has two properties:

Name - the name of the element (string value).

Value - the value of the element. A value of arbitrary type, which can also be "None."

9 Built-in functions

CreateVarParam(value) - creates an object with the initial value to pass a variable parameter to
certain functions. Returns an object.

>>> from plugin import *

>>> obj = CreateVarParam(-1)

SendData(datasource, buffer) - sends the buffer byte array to the datasource data source. The
buffer type must be bytes or bytearray. datasource can be retrieved when calling API functions.
Normally data are sent when the program executes API function code. Please note that calling a
function does not guarantee delivery of data to the recipient.

>>> from plugin import *

8Built-in functions

©2018-2024 AGG Software

>>> SendData(datasource, b'ABCD')

GetModuleParameter(name) - returns a module parameter value with name.

>>> from plugin import *

>>> value = GetModuleParameter('ModulePath')

SetModuleParameter(name, value) - sets value a module parameter with name.

>>> from plugin import *

>>> value = GetModuleParameter('ModulePath')

>>> SetModuleParameter('LogTitle', 'MyPlugin')

10 Module parameters

In this section, you can see the list of parameter identifiers with which you can access module
parameters by calling the appropriate API function. The character "[w]" in a parameter description
means that the value can be changed.

ModulePath - (string) the path to the folder where the module file is installed.

ModuleName - (string) the name of the module.

ApplicationFullName - (string) the name of the main application.

ModuleRegistryRoot1 - (dword) the registry branch where settings are stored:
HKEY_LOCAL_MACHINE или HKEY_CURRENT_USER

ModuleRegistryRoot2 - (dword) the backup registry branch.

ModuleRegistryPath - (string) the path in the registry where settings are stored.

INIFile - (string) the name of the INI file where settings are stored. If the name is specified, then
settings are not stored in the registry but in a file.

INISectionPrefix - (string) if settings are stored in a file, then the parameter stores the prefix of the INI
section of the settings file for this configuration and module.

DisplayFullVersion - (string) the version of the module.

IsTemporaryLoad - (bool) indicates that the module is temporarily loaded. For example, to edit
settings.

LogTitle - (string) [w] the module title, which is displayed in the log file with program messages
before any message from the module. It may be the same as the module description.

Description - (string) [w] the module description that is displayed in module lists in the main
program.

EventsSupported - (string) [w] a list of events that a module is ready to receive and handle. Identifiers
are separated by commas. By default, this list is empty. Standard events:

9 Python plugin plugin

©2018-2024 AGG Software

LOG-MESSAGE - new text in the program message log.
NEW-LOG-FILE - a new log file with data has been created.
LOG-FILE-DELETE - deletion of the old log file with data.
NEW-DATA-PACKET - a new data packet from the parser.
ERROR-WRITE-FILE - error while writing to log file.
PORT-OPEN - data source is open (started).
PORT-CLOSE - data source is closed.
CONFIG-CHANGE - configuration has been changed by the user.

USER-LOGOOF, USER-LOGON - in service mode, end or beginning of user session.
STOP-SERVICE - in service mode, service stop.

	Introduction
	System requirements
	Installing Python plugin
	Glossary
	Setup
	API
	Buffer
	List of values
	Built-in functions
	Module parameters

